

#### Objective

 Determine sustainability of agro-forestry and agro-industrial systems by using emergy and financial indicators

#### Methods

- Emergy analysis
  - investment ratio
  - environmental loading ratio

- Financial analysis
  - net revenue cost ratio

### A System Diagram Example



Figure 3-35. Shifting Cultivation System Diagram.

#### An Emergy Evaluation Table

Table 1. Emergy Evaluation of Shifting Cultivation System.

|                         |                  |            | Trans-     | Solar    | Emdollar   |
|-------------------------|------------------|------------|------------|----------|------------|
| Note                    | Item             | Raw Units  | formity    | Emergy   | Value      |
|                         |                  |            |            | 1E+15    |            |
|                         |                  | (units/yr) | (sej/unit) | (sej/yr) | (US\$/yr)* |
| RENEWABLE RESOURCES:    |                  |            |            |          |            |
|                         | 1 Sunlight       | 1.97E+15 J | 1E+00      | 1.97     | 1,045      |
|                         | 2 Rain, chemical | 1.85E+12 J | 2E+04      | 28.57    | 15,183     |
| NONRENEWABLE RESOURCES: |                  |            |            |          |            |
|                         | 3 Soil erosion   | 1.90E+10 J | 7.37E+04   | 1.40     | 744        |
| INPUTS:                 |                  |            |            |          |            |
|                         | 4 Seeds          | 1.04E+09 J | 3.57E+05   | 0.37     | 197        |
|                         | 5                |            |            |          |            |
| YIELDS:                 |                  |            |            |          |            |
|                         | 9 Crops          | 1.28E+11 J | 3.57E+05   | 45.68    | 24,272     |
|                         |                  |            |            |          |            |

## Emergy Ratios to Evaluate Resource Use



Investment Ratio 
$$IR = (M + S) / (R + N)$$

Environmental Loading Ratio ELR = (N + M + S) / R

#### Financial Analysis

- B (benefits) = Total financial benefits
- C (costs) = Total financial costs
- R (revenue)= B C
- NET REVENUE / COST RATIO
  - R/C = (revenue) / (costs)
- Government subsidies and loans



#### Systems Analyzed in this Study

> 400 Hectares Agro-forestry System

One Hectare Shaded Coffee Cultivation System

One Hectare Sugar Cane Industrialized Cultivation System

### 400 Hectares Agro-forestry System

Wood extraction in tropical rain forest

12 stands of 33.3 hectares each

 35% of trees with a diameter breast height (dbh) equal or greater than 45 cm can be cut

#### 400 Hectares Agro-forestry System



#### 400 Hectares Agro-forestry System



Monoculture of Arabic Coffea

1,200 plants per hectare

Two to three fertilizations per year

Labor intensive (160 days/hectare/year)





## One Hectare Sugar Cane Industrialized Cultivation System

Irrigated systems

Chemicals

Mean values obtained from 3,686 hectares

Eradication of forest

### One Hectare Sugar Cane Industrialized Cultivation System



#### Other Systems for Comparison

- 12.5 Hectares Shifting Cultivation System
  - 2.5 hectares cultivated per year
  - 10.5 hectares left fallow
  - No chemicals
- One Hectare Corn Cultivation
  - With chemicals
  - Intensive (yearly) cultivation



#### **Investment Ratios**



#### Service to Free Ratios



#### **Environmental Loading Ratios**



#### Net Revenue/Cost Ratio



### 400 Hectares Agro-forestry System

- ✓ Lowest investment ratio (IR=0.41)
- ✓ Highly profitable (NR/C=1.93)
- ✓ Forest conservation

- High requirement of land
- Over quota extraction (28.3 m3/ha/yr)
- Lack of law enforcement

- Maintanance of forest cover
- ✓ Adequate transition zone between protected areas and agricultural fields
- > High investment ratio (IR=9.4)
- Low profitability (NR/C=0.5)
- Labor intensive (160 days/ha/yr)
- Chemical usage

## One Hectare Sugar Cane Industrialized Cultivation System

- ✓ Highly profitable (NR/C=1.5)
- ✓ Not labor intensive (61 days/ha/yr)

- ► High external dependency (IR=16.3)
- > Chemical usage (34 % of total emergy)
- > 50 percent water loss
- > Native ecosystems eradication



## Sustainability of Agro-forestry and Agro-industrial Systems in Chiapas, Mexico

- Agro-forestry systems had lower investment and environmental loading ratios.

 Agro-forestry were more profitable than industrialized systems.

## Sustainability of Agro-forestry and Agro-industrial Systems in Chiapas, Mexico

- Corn shifting cultivation was the most profitable (NR/C=2.3).

 Industrialized systems required less land but depended more on external resources.

## Sustainability of Agro-forestry and Agro-industrial Systems in Chiapas, Mexico

 Coffee grown under shade with chemicals was labor intensive with lower profitability.

#### **Study Limitations**

? Use of "circular" transformities

? Life cycle analysis (LCA): water pollution, soil pollution, forest cut, biodiversity, etc. should be included in the analysis

## Total Emergy, Transformity and Investment Ratios for Corn Systems



# Yield and Revenue Cost Ratios for Corn Systems

